Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 61(11): e179-e185, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090489

RESUMO

Focal epilepsy (FE) is clinically highly heterogeneous. It has been shown recently that not only rare but also a subset of common genetic variants confer risk for FE. The relatively modest power of genetic studies in FE suggests a high genetic heterogeneity of FE when grouped as one disorder. We hypothesize that the clinical heterogeneity of FE is correlated with genetic heterogeneity on a common risk variant level. To test the hypothesis, we used an FE polygenic risk score "FE-PRS" that combines small effect sizes of thousands of common variants from the largest FE-GWAS (genome-wide association study) into a single measure. We grouped 414 individuals with FE according to common clinical features into subgroups, either by one feature at a time or by all features combined in a cluster analysis. We examined their association with FE-PRS compared to 20 435 matched population controls and observed heterogeneous FE-PRS burden among the subgroups. The highest phenotypic variance explained by FE-PRS was identified in a cluster analysis-defined FE subgroup where all individuals had unknown etiologies and psychiatric comorbidities, and the majority had early onset seizures. Our results indicate that genetic factors associated with FE have differential burden among FE subtypes. Future studies using better-powered FE-PRS might have clinical utility.


Assuntos
Epilepsias Parciais/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , População Branca/genética , Estudos de Coortes , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Sistema de Registros
2.
J Immunol ; 204(5): 1111-1118, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31959733

RESUMO

Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid ß (Aß) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. Soluble TREM2 (sTREM2), a soluble cleavage product of TREM2, is elevated in AD cerebrospinal fluid and positively correlates with cognitive decline. There is relatively little information about TREM2 in DS. Our objective was to examine the relationship between sTREM2 and inflammatory markers in young adults with DS, prior to the development of dementia symptoms. Because TREM2 plays a role in the innate immune response and has been associated with dementia, the hypothesis of this exploratory study was that young adults with DS predementia (n = 15, mean age = 29.5 y) would exhibit a different relationship between sTREM2 and inflammatory markers in plasma, compared with neurotypical, age-matched controls (n = 16, mean age = 29.6 y). Indeed, young adults with DS had significantly elevated plasma sTREM2 and inflammatory markers. Additionally, in young adults with DS, sTREM2 correlated positively with 24 of the measured cytokines, whereas there were no significant correlations in the control group. Hierarchical clustering of sTREM2 and cytokine concentrations also differed between the groups, supporting the hypothesis that its function is altered in people with DS predementia. This preliminary report of human plasma provides a basis for future studies investigating the relationship between TREM2 and the broader immune response predementia.


Assuntos
Síndrome de Down/imunologia , Mediadores da Inflamação/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Adulto , Biomarcadores/sangue , Citocinas/sangue , Citocinas/imunologia , Síndrome de Down/sangue , Feminino , Humanos , Mediadores da Inflamação/sangue , Masculino , Glicoproteínas de Membrana/sangue , Receptores Imunológicos/sangue
3.
Eur J Paediatr Neurol ; 24: 35-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31924506

RESUMO

By accumulating ever greater amounts of genomic data, scientists have identified >100 genes associated with Mendelian forms of epilepsy and neurodevelopmental disorders with seizures. For most of the identified genes a wide range of genetic variants have been identified and affected patients are clinically heterogeneous. It is not clear to which degree the clinical heterogeneity can be attributed to the disease causing variant alone. We need to improve our current understanding of biophysical effects of variants on protein function and the role of polygenic background in modifying the clinical representation. In addition, longitudinal clinical data need to be recorded using standardized methods and shared across research centers to build large virtual cohorts for each single gene disorder. Without large, comprehensive, longitudinal datasets, studying the interplay of environmental factors and genetic factors will be challenging. As a community, we must work together to set the foundation for biorepositories and the collection and sharing of 'big data' in order to allow genetic-phenotypic characterization of the epilepsies and to fully utilize the potential for drug discovery, and patient-specific tailored management.


Assuntos
Big Data , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Genômica , Pediatria/métodos , Pesquisa Translacional Biomédica/métodos , Deficiências do Desenvolvimento/complicações , Epilepsia/complicações , Humanos
4.
Nucleic Acids Res ; 47(W1): W99-W105, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114901

RESUMO

Clinical genetic testing has exponentially expanded in recent years, leading to an overwhelming amount of patient variants with high variability in pathogenicity and heterogeneous phenotypes. A large part of the variant level data is aggregated in public databases such as ClinVar. However, the ability to explore this rich resource and answer general questions such as 'How many genes inside ClinVar are associated with a specific disease? or 'In which part of the protein are patient variants located?' is limited and requires advanced bioinformatics processing. Here, we present Simple ClinVar (http://simple-clinvar.broadinstitute.org/) a web server application that is able to provide variant, gene and disease level summary statistics based on the entire ClinVar database in a dynamic and user-friendly web-interface. Overall, our web application is able to interactively answer basic questions regarding genetic variation and its known relationships to disease. By typing a disease term of interest, the user can identify in seconds the genes and phenotypes most frequently reported to ClinVar. Subsets of variants can then be further explored, filtered or mapped and visualized in the corresponding protein sequences. Our website will follow ClinVar monthly releases and provide easy access to ClinVar resources to a broader audience including basic and clinical scientists.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Software , Sequência de Aminoácidos/genética , Biologia Computacional/métodos , Gerenciamento de Dados , Testes Genéticos , Variação Genética/genética , Genoma Humano/genética , Humanos , Internet
5.
Epilepsia ; 60(3): 406-418, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30682224

RESUMO

OBJECTIVE: To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. METHODS: We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. RESULTS: The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes. SIGNIFICANCE: GNAO1 encephalopathy most frequently presents with seizures beginning in the first 3 months of life. Concurrent movement disorders are also a prominent feature in the spectrum of GNAO1 encephalopathy. All variants affected the GTP-binding domain of GNAO1, highlighting the importance of this region for G-protein signaling and neurodevelopment.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Masculino , Adulto Jovem
6.
Cell Stem Cell ; 24(2): 318-327.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554961

RESUMO

Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs are preferentially encoded from the genomic loci of key developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns in vivo in mouse and in human embryos. Signifying their developmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, which localizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncT depletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.


Assuntos
Linhagem da Célula/genética , Proteínas Fetais/metabolismo , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Loci Gênicos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...